Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 965
Filtrar
1.
Viruses ; 16(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38543754

RESUMO

The H274Y substitution (N2 numbering) in neuraminidase (NA) N1 confers oseltamivir resistance to A(H1N1) influenza viruses. This resistance has been associated with reduced N1 expression using transfected cells, but the effect of this substitution on the enzymatic properties and on the expression of other group-1-NA subtypes is unknown. The aim of the present study was to evaluate the antiviral resistance, enzymatic properties, and expression of wild-type (WT) and H274Y-substituted NA for each group-1-NA. To this end, viruses with WT or H274Y-substituted NA (N1pdm09 or avian N4, N5 or N8) were generated by reverse genetics, and for each reverse-genetic virus, antiviral susceptibility, NA affinity (Km), and maximum velocity (Vm) were measured. The enzymatic properties were coupled with NA quantification on concentrated reverse genetic viruses using mass spectrometry. The H274Y-NA substitution resulted in highly reduced inhibition by oseltamivir and normal inhibition by zanamivir and laninamivir. This resistance was associated with a reduced affinity for MUNANA substrate and a conserved Vm in all viruses. NA quantification was not significantly different between viruses carrying WT or H274Y-N1, N4 or N8, but was lower for viruses carrying H274Y-N5 compared to those carrying a WT-N5. In conclusion, the H274Y-NA substitution of different group-1-NAs systematically reduced their affinity for MUNANA substrate without a significant impact on NA Vm. The impact of the H274Y-NA substitution on viral NA expression was different according to the studied NA.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Humanos , Oseltamivir/farmacologia , Antivirais/farmacologia , Vírus da Influenza A/genética , Neuraminidase/genética , Neuraminidase/metabolismo , Vírus da Influenza A Subtipo H1N1/genética , Genética Reversa , Farmacorresistência Viral/genética , Substituição de Aminoácidos , Inibidores Enzimáticos/farmacologia
2.
Antiviral Res ; 224: 105853, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430970

RESUMO

While clinical trials have illuminated both the virological and clinical efficacy of baloxavir for influenza and post-treatment viral resistance, these aspects warrant further study in real-world settings. In response, we executed a prospective, observational study of the Japanese 2022-2023 influenza season. A cohort of 73 A(H3N2)-diagnosed outpatients-36 treated with baloxavir, 20 with oseltamivir, and 17 with other neuraminidase inhibitors (NAIs)-were analyzed. Viral samples were collected before and after administering an antiviral on days 1, 5, and 10, respectively. Cultured viruses were amplified using RT-PCR and sequenced to detect mutations. Fever and other symptoms were tracked via self-reporting diaries. In the baloxavir cohort, viral detection was 11.1% (4/36) and 0% (0/36) on day 5 and day 10, respectively. Two isolates from day 5 (5.6%, 2/36) manifested I38T/M-substitutions in the polymerase acidic protein (PA). For oseltamivir and other NAIs, viral detection rates were 60.0% (12/20) and 52.9% (9/17) on day 5, and 16.7% (3/18) and 6.3% (1/16) on day 10, respectively. No oseltamivir-resistant neuraminidase mutations were identified after treatment. Median fever durations for the baloxavir, oseltamivir, and other NAI cohorts were 27.0, 38.0, and 36.0 h, respectively, with no significant difference. Two patients harboring PA I38T/M-substitutions did not exhibit prolonged fever or other symptoms. These findings affirm baloxavir's virological and clinical effectiveness against A(H3N2) in the 2022-2023 season and suggest limited clinical influence of post-treatment resistance emergence.


Assuntos
Dibenzotiepinas , Influenza Humana , Morfolinas , Triazinas , Humanos , Influenza Humana/tratamento farmacológico , Oseltamivir/uso terapêutico , Oseltamivir/farmacologia , Neuraminidase/genética , Neuraminidase/uso terapêutico , Vírus da Influenza A Subtipo H3N2/genética , Pacientes Ambulatoriais , Estações do Ano , Estudos Prospectivos , Antivirais/uso terapêutico , Antivirais/farmacologia , Piridonas/uso terapêutico , Inibidores Enzimáticos/farmacologia , Guanidinas/farmacologia , Febre/tratamento farmacológico
3.
Biomed Pharmacother ; 173: 116367, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460365

RESUMO

Sphingolipid transporter 1 (SPNS1) is a significant differentially expressed gene (DEGs) in esophageal squamous cell carcinoma (ESCC). According to 3 pairs clinic cohorts, transcriptomic (155 pairs of ESCC samples and GSE53624, and proteomic data from PXD021701 including 124 ESCC samples) we found that SPNS1 was significantly higher in ESCC tissues compared to adjacent normal esophagus tissues. ESCC patients with high SPNS1 had a significantly poorer clinical prognosis than those with low SPNS1. Knockdown of SPNS1 significantly inhibited the proliferation, migration, and invasion abilities of ESCC cells, while promoting apoptosis. And overexpression of SPNS1 exhibited opposite functions. Furthermore, ESCC cells became more sensitive to 5-fluorouracil (5-FU) when SPNS1 was knocked down. Transcriptome sequencing revealed that NEU1 was one significant DEG affected by SPNS1 and positively correlated with SPNS1 expression. Oseltamivir phosphate (OP), one NEU1 inhibitor, markedly reversed 5-FU resistance, migration, and proliferation induced by high expression of SPNS1 both in vivo and in vitro. Our findings indicated that SPNS1 might promote the progression of ESCC by upregulating NEU1 expression and influencing chemotherapy sensitivity. These results provide new perceptions into potential therapeutic targets for ESCC treatment. The present study aimed to investigate the role and underlying mechanism of SPNS1 in ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Oseltamivir/farmacologia , Oseltamivir/uso terapêutico , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Proteômica , Linhagem Celular Tumoral , Proliferação de Células , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Movimento Celular , Regulação Neoplásica da Expressão Gênica
4.
J Med Virol ; 96(3): e29484, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38402600

RESUMO

Antiviral therapy based on neuraminidase (oseltamivir) or polymerase (baloxavir marboxil) inhibitors plays an important role in the management of influenza infections. However, the emergence of drug resistance and the uncontrolled inflammatory response are major limitations in the treatment of severe influenza disease. Protectins D1 (PD1) and DX (PDX), part of a family of pro-resolving mediators, have previously demonstrated anti-influenza activity as well as anti-inflammatory properties in various clinical contexts. Herein, we synthetized a series of simplified PDX analogs and assessed their in vitro antiviral activity against influenza A(H1N1) viruses, including oseltamivir- and baloxavir-resistant variants. In ST6GalI-MDCK cells, the PDX analog AN-137B reduced viral replication in a dose-dependent manner with IC50 values of 23.8 for A/Puerto Rico/8/1934 (H1N1) and between 32.6 and 36.7 µM for susceptible and resistant A(H1N1)pdm09 viruses. In MTS-based cell viability experiments, AN-137B showed a 50% cellular cytotoxicity (CC50 ) of 638.7 µM with a resulting selectivity index of 26.8. Of greater importance, the combination of AN-137B with oseltamivir or baloxavir resulted in synergistic and additive in vitro effects, respectively. Treatment of lipopolysaccharide (LPS)-stimulated macrophages with AN-137B resulted in a decrease of iNOS activity as shown by the reduction of nitrite production, suggesting an anti-inflammatory effect. In conclusion, our results indicate that the protectin analog AN-137B constitutes an interesting therapeutic modality against influenza A virus, warranting further evaluation in animal models.


Assuntos
Dibenzotiepinas , Ácidos Docosa-Hexaenoicos , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Morfolinas , Piridonas , Triazinas , Animais , Humanos , Oseltamivir/farmacologia , Oseltamivir/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Influenza Humana/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Farmacorresistência Viral , Neuraminidase
5.
Sci Adv ; 10(8): eadk9004, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38394202

RESUMO

Seasonal or pandemic illness caused by influenza A viruses (IAVs) is a major public health concern due to the high morbidity and notable mortality. Although there are several approved drugs targeting different mechanisms, the emergence of drug resistance calls for new drug candidates that can be used alone or in combinations. Small-molecule IAV entry inhibitor, ING-1466, binds to hemagglutinin (HA) and blocks HA-mediated viral infection. Here, we show that this inhibitor demonstrates preventive and therapeutic effects in a mouse model of IAV with substantial improvement in the survival rate. When administered orally it elicits a therapeutic effect in mice, even after the well-established infection. Moreover, the combination of ING-1466 with oseltamivir phosphate or baloxavir marboxil enhances the therapeutic effect in a synergistic manner. Overall, ING-1466 has excellent oral bioavailability and in vitro absorption, distribution, metabolism, excretion, and toxicity profile, suggesting that it can be developed for monotherapy or combination therapy for the treatment of IAV infections.


Assuntos
Dibenzotiepinas , Vírus da Influenza A , Morfolinas , Piridonas , Tiepinas , Triazinas , Animais , Camundongos , Oseltamivir/farmacologia , Oseltamivir/uso terapêutico , Antivirais/uso terapêutico , Oxazinas/farmacologia , Oxazinas/uso terapêutico , Piridinas , Tiepinas/farmacologia , Tiepinas/uso terapêutico
6.
Biochemistry ; 63(3): 264-272, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38190441

RESUMO

Vital to the treatment of influenza is the use of antivirals such as Oseltamivir (Tamiflu) and Zanamivir (Relenza); however, antiviral resistance is becoming an increasing problem for these therapeutics. The RNA-dependent RNA polymerase acidic N-terminal (PAN) endonuclease, a critical component of influenza viral replication machinery, is an antiviral target that was recently validated with the approval of Baloxavir Marboxil (BXM). Despite its clinical success, BXM has demonstrated susceptibility to resistance mutations, specifically the I38T, E23K, and A36 V mutants of PAN. To better understand the effects of these mutations on BXM resistance and improve the design of more robust therapeutics, this study examines key differences in protein-inhibitor interactions with two inhibitors and the I38T, E23K, and A36 V mutants. Differences in inhibitor binding were evaluated by measuring changes in binding to PAN using two biophysical methods. The binding mode of two distinct inhibitors was determined crystallographically with both wild-type and mutant forms of PAN. Collectively, these studies give some insight into the mechanism of antiviral resistance of these mutants.


Assuntos
Dibenzotiepinas , Influenza Humana , Morfolinas , Tiepinas , Humanos , Oxazinas , Piridinas/farmacologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Endonucleases/genética , Tiepinas/farmacologia , Tiepinas/uso terapêutico , Piridonas/uso terapêutico , Oseltamivir/farmacologia , Oseltamivir/uso terapêutico , Zanamivir/uso terapêutico , Triazinas/farmacologia , Triazinas/uso terapêutico
7.
Virulence ; 15(1): 2301242, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38170681

RESUMO

Influenza A virus (IAV) poses a threat to patients receiving immunosuppressive medications since they are more susceptible to infection with severe symptoms, and even death. Understanding the direct effects of immunosuppressants on IAV infection is critical for optimizing immunosuppression in these patients who are infected or at risk of influenza virus infection. We profiled the effects of 10 immunosuppressants, explored the antiviral mechanisms of immunosuppressants, and demonstrated the combined effects of immunosuppressants with the antiviral drug oseltamivir in IAV-infected cell models. We found that mycophenolic acid (MPA) strongly inhibits viral RNA replication via depleting cellular guanosine pool. Treatment with 6-Thioguanine (6-TG) promoted viral protein degradation through a proteasomal pathway. Filgotinib blocked mRNA splicing of matrix protein 2, resulting in decreased viral particle assembly. Furthermore, combined treatment with immunosuppressants and oseltamivir inhibits IAV viral particle production in an additive or synergic manner. Our results suggest that MPA, 6-TG, and filgotinib could be the preferential choices for patients who must take immunosuppressants but are at risk of influenza virus infection.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Oseltamivir/farmacologia , Antivirais/farmacologia , Influenza Humana/tratamento farmacológico , Imunossupressores/farmacologia , Vírus da Influenza A/fisiologia , Replicação Viral , RNA Mensageiro , Estabilidade Proteica
8.
J Med Virol ; 96(2): e29427, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38288882

RESUMO

Influenza virus is known to cause mild to severe respiratory infections and is also prone to genetic mutations. Of all the mutations, neuraminidase (NA) gene mutations are a matter of concern, as most approved antivirals target this protein. During the 2020 influenza season, an emergence of mutation in the NA gene, affecting the binding of the World Health Organization (WHO)-recommended probes to the specific site of the NA gene, was reported by our group. As a result of this mutation, the WHO-recommended allelic discrimination real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay was unable to detect wild-type (H275) or mutant oseltamivir-resistant (Y275) strains of influenza A(H1N1)pmd09 viruses. In the current study, the WHO-recommended probes were redesigned according to the mutation in the probe binding site. Fifty undetermined samples (2020-2021) from the previous study were retested with the newly designed probes and found to be positive for H275 and/or Y275. The results obtained were similar to the Sanger sequencing results from the previous study, suggesting that the redesigned probes were efficient in discriminating between wild-type and mutant-type viruses. Furthermore, 133 samples from 2022, making a total of 183 samples (2020-2022), were tested using improved allelic discrimination real-time RT-PCR, and the overall prevalence rate of oseltamivir resistance in 2020-2022 was found to be 0.54%.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Humanos , Oseltamivir/farmacologia , Oseltamivir/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Vírus da Influenza A Subtipo H1N1/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Mutação de Sentido Incorreto , Proteínas Virais/genética , Farmacorresistência Viral/genética , Mutação , Neuraminidase/genética
9.
Biochim Biophys Acta Biomembr ; 1866(3): 184273, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211646

RESUMO

Oseltamivir belongs to the neuraminidase inhibitors, developed against the influenza virus, and registered under the trademark Tamiflu. Despite its long-term acquaintance, there is limited information in the literature about its physicochemical and structural properties in a lipid-water system. We present an experimentally determined partition coefficient with structural information on the interaction of oseltamivir with the model membrane, its possible location, and its effect on the membrane thermodynamics. The hydrophobic part of the lipid bilayer is affected to a moderate extent, which was proved by slight changes in thermal and structural properties. Hereby, interaction of oseltamivir with the phospholipid bilayer induces concentration dependent decrease of lateral pressure in the bilayer acyl chain region. Oseltamivir charges the bilayer surface positively, which results in the zeta potential increase and changes in anisotropic properties studied by the polarised light microscopy. At the highest oseltamivir concentrations studied, the multilamellar structure is extensively disturbed, likely due to electrostatic repulsion between the adjacent bilayers.


Assuntos
Antivirais , Oseltamivir , Oseltamivir/química , Oseltamivir/farmacologia , Antivirais/farmacologia , Bicamadas Lipídicas/química , Fosfolipídeos , Fosfatos
10.
Antiviral Res ; 222: 105818, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38280564

RESUMO

In this research, we employed a deep reinforcement learning (RL)-based molecule design platform to generate a diverse set of compounds targeting the neuraminidase (NA) of influenza A and B viruses. A total of 60,291 compounds were generated, of which 86.5 % displayed superior physicochemical properties compared to oseltamivir. After narrowing down the selection through computational filters, nine compounds with non-sialic acid-like structures were selected for in vitro experiments. We identified two compounds, DS-22-inf-009 and DS-22-inf-021 that effectively inhibited the NAs of both influenza A and B viruses (IAV and IBV), including H275Y mutant strains at low micromolar concentrations. Molecular dynamics simulations revealed a similar pattern of interaction with amino acid residues as oseltamivir. In cell-based assays, DS-22-inf-009 and DS-22-inf-021 inhibited IAV and IBV in a dose-dependent manner with EC50 values ranging from 0.29 µM to 2.31 µM. Furthermore, animal experiments showed that both DS-22-inf-009 and DS-22-inf-021 exerted antiviral activity in mice, conferring 65 % and 85 % protection from IAV (H1N1 pdm09), and 65 % and 100 % protection from IBV (Yamagata lineage), respectively. Thus, these findings demonstrate the potential of RL to generate compounds with promising antiviral properties.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Animais , Camundongos , Humanos , Oseltamivir/farmacologia , Oseltamivir/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Inteligência Artificial , Proteínas Virais , Farmacorresistência Viral , Vírus da Influenza B , Neuraminidase
11.
J Comput Chem ; 45(5): 247-263, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37787086

RESUMO

At the beginning of the last century, multiple pandemics caused by influenza (flu) viruses severely impacted public health. Despite the development of vaccinations and antiviral medications to prevent and control impending flu outbreaks, unforeseen novel strains and continuously evolving old strains continue to represent a serious threat to human life. Therefore, the recently identified H10N7, for which not much data is available for rational structure-based drug design, needs to be further explored. Here, we investigated the structural dynamics of neuraminidase N7 upon binding of inhibitors, and the drug resistance mechanisms against the oseltamivir (OTV) and laninamivir (LNV) antivirals due to the crucial R292K mutation on the N7 using the computational microscope, molecular dynamics (MD) simulations. In this study, each system underwent long 2 × 1 µs MD simulations to answer the conformational changes and drug resistance mechanisms. These long time-scale dynamics simulations and free energy landscapes demonstrated that the mutant systems showed a high degree of conformational variation compared to their wildtype (WT) counterparts, and the LNV-bound mutant exhibited an extended 150-loop conformation. Further, the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) calculation and MM/GBSA free energy decomposition were used to characterize the binding of OTV and LNV with WT, and R292K mutated N7, revealing the R292K mutation as drug-resistant, facilitated by a decline in binding interaction and a reduction in the dehydration penalty. Due to the broader binding pocket cavity of the smaller K292 mutant residue relative to the wildtype, the drug carboxylate to K292 hydrogen bonding was lost, and the area surrounding the K292 residue was more accessible to water molecules. This implies that drug resistance could be reduced by strengthening the hydrogen bond contacts between N7 inhibitors and altered N7, creating inhibitors that can form a hydrogen bond to the mutant K292, or preserving the closed cavity conformations.


Assuntos
Vírus da Influenza A Subtipo H10N7 , Influenza Humana , Humanos , Influenza Humana/tratamento farmacológico , Antivirais/farmacologia , Neuraminidase/química , Farmacorresistência Viral/genética , Oseltamivir/farmacologia , Oseltamivir/química , Oseltamivir/metabolismo , Mutação , Simulação de Dinâmica Molecular , Inibidores Enzimáticos/farmacologia
12.
J Infect Chemother ; 30(3): 266-270, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37832825

RESUMO

To assess the extent of susceptibility to the four neuraminidase inhibitors (NAIs) approved in Japan of the epidemic viruses in the 2022-23 influenza season in Japan, we measured the 50 % inhibitory concentration (IC50) of oseltamivir, zanamivir, peramivir, and laninamivir in influenza virus isolates from patients. Viral isolation was done with specimens obtained prior to and after treatment, and the type/subtype was determined by RT-PCR using type- and subtype-specific primers. The IC50 was determined by a neuraminidase inhibition assay using a fluorescent substrate. Virus isolates, one A(H1N1)pdm09 and 74 A(H3N2), were measured in the 2022-23 season. The geometric mean IC50s of the 74 A(H3N2) isolated prior to treatment were 0.78 nM, 0.66 nM, 2.08 nM, and 2.85 nM for oseltamivir, peramivir, zanamivir, and laninamivir, respectively, comparable to those of the previous ten studied seasons. No A(H3N2) with highly reduced sensitivity to any of the NAIs was found in the 2022-23 season prior to or after drug administration. These results indicate that the sensitivity to these four commonly used NAIs has been maintained, at least for A(H3N2), in the 2022-23 influenza season in Japan, after the 2020-21 and 2021-22 seasons when the prevalence of influenza was extremely low.


Assuntos
Ácidos Carbocíclicos , Guanidinas , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Piranos , Ácidos Siálicos , Humanos , Zanamivir/farmacologia , Zanamivir/uso terapêutico , Oseltamivir/farmacologia , Oseltamivir/uso terapêutico , Neuraminidase , Estações do Ano , Japão/epidemiologia , Vírus da Influenza A Subtipo H3N2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico
13.
Virology ; 590: 109954, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086284

RESUMO

The possible emergence of drug-resistant avian flu raises concerns over the limited effectiveness of currently approved antivirals (neuraminidase inhibitors - NAIs) in the hypothetical event of a zoonotic spillover. Our study demonstrated that the recombinant avian A(H6N1) viruses showed reduced inhibition (RI) by multiple NAI drugs following the introduction of point mutations found predominantly in the neuraminidase gene (NA) of NAI-resistant human influenza strains (E119V, R292K and H274Y; N2 numbering). Moreover, A(H6N1)-H274Y showed increased replication efficiency in vitro, and a fitness advantage over wild-type (WT) when co-inoculated into embryonated hen's eggs. The results presented in our study together with the zoonotic potential of the A(H6N1) virus as evidenced by the human infection from 2013, highlight the need for enhanced monitoring of NAI resistance-associated signatures in circulating LPAI (low pathogenic avian influenza) globally.


Assuntos
Influenza Aviária , Influenza Humana , Animais , Feminino , Humanos , Oseltamivir/farmacologia , Galinhas , Neuraminidase/genética , Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Mutação , Resistência a Medicamentos , Farmacorresistência Viral/genética
14.
Viruses ; 15(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38140606

RESUMO

Influenza can cause respiratory infections, leading to significant morbidity and mortality in humans. While current influenza vaccines offer varying levels of protection, there remains a pressing need for effective antiviral drugs to supplement vaccine efforts. Currently, the FDA-approved antiviral drugs for influenza include oseltamivir, zanamivir, peramivir, and baloxavir marboxil. These antivirals primarily target the virus, making them vulnerable to drug resistance. In this study, we evaluated the efficacy of the neuraminidase inhibitor, oseltamivir, against probenecid, which targets the host cells and is less likely to engender resistance. Our results show that probenecid has superior antiviral efficacy compared to oseltamivir in both in vitro replication assays and in vivo mouse models of influenza infection.


Assuntos
Vacinas contra Influenza , Influenza Humana , Humanos , Animais , Camundongos , Oseltamivir/farmacologia , Oseltamivir/uso terapêutico , Probenecid/farmacologia , Probenecid/uso terapêutico , Vacinas contra Influenza/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Inibidores Enzimáticos/farmacologia , Replicação Viral , Neuraminidase , Farmacorresistência Viral
15.
J Enzyme Inhib Med Chem ; 38(1): 2277135, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37955306

RESUMO

Our previous studies have shown that the introduction of structurally diverse benzyl side chains at the C5-NH2 position of oseltamivir to occupy 150-cavity contributes to the binding affinity with neuraminidase and anti-influenza activity. To obtain broad-spectrum neuraminidase inhibitors, we designed and synthesised a series of novel oseltamivir derivatives bearing different N-heterocycles substituents that have been proved to induce opening of the 150-loop of group-2 neuraminidases. Among them, compound 6k bearing 4-((r)-2-methylpyrrolidin-1-yl) benzyl group exhibited antiviral activities similar to or weaker than those of oseltamivir carboxylate against H1N1, H3N2, H5N1, H5N6 and H5N1-H274Y mutant neuraminidases. More encouragingly, 6k displayed nearly 3-fold activity enhancement against H3N2 virus over oseltamivir carboxylate and 2-fold activity enhancement over zanamivir. Molecular docking studies provided insights into the explanation of its broad-spectrum potency against wild-type neuraminidases. Overall, as a promising lead compound, 6k deserves further optimisation by fully considering the ligand induced flexibility of the 150-loop.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Oseltamivir/farmacologia , Oseltamivir/química , Neuraminidase , Simulação de Acoplamento Molecular , Virus da Influenza A Subtipo H5N1/metabolismo , Vírus da Influenza A Subtipo H3N2/metabolismo , Glicosídeo Hidrolases
16.
Viruses ; 15(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38005940

RESUMO

Influenza remains a worldwide health concern. Antiviral drugs are considered as one of the useful options for its prevention as a complementary measure to vaccination. Baloxavir acid selectively inhibits the cap-dependent endonuclease of influenza viruses and exhibits marked viral titre reduction in patients. Here, we describe the prophylactic potency of baloxavir acid against lethal infection with influenza A and B viruses in mice. BALB/c mice were subcutaneously administered once with baloxavir acid suspension, or orally administered once daily for 10 days with oseltamivir phosphate solution at human relevant doses. Next, the mice were intranasally inoculated with A/PR/8/34 (H1N1) or B/Hong Kong/5/72 strain at 24 to 96 h after the initial dosing. Prophylactic treatment with the antiviral drugs significantly reduced the lung viral titres and prolonged survival time. In particular, baloxavir acid showed a greater suppressive effect on lung viral titres compared to oseltamivir phosphate. In this model, baloxavir acid maintained significant prophylactic effects against influenza A and B virus infections when the plasma concentration at the time of infection was at least 0.88 and 3.58 ng/mL, respectively. The significant prophylactic efficacy observed in our mouse model suggests the potential utility of baloxavir marboxil for prophylaxis against influenza in humans.


Assuntos
Herpesvirus Cercopitecino 1 , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Tiepinas , Humanos , Animais , Camundongos , Influenza Humana/tratamento farmacológico , Influenza Humana/prevenção & controle , Oseltamivir/farmacologia , Oseltamivir/uso terapêutico , Oxazinas/uso terapêutico , Piridinas/uso terapêutico , Tiepinas/farmacologia , Tiepinas/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Camundongos Endogâmicos BALB C , Fosfatos
17.
Eur J Med Chem ; 261: 115845, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37804770

RESUMO

Concerning the emergence of resistance to current anti-influenza drugs, our previous phenotypic-based screening study identified the compound A9 as a promising lead compound. This chalcone analog, containing a 2,6-dimethoxyphenyl moiety, exhibited significant inhibitory activity against oseltamivir-resistant strains (H1N1 pdm09), with an EC50 value of 1.34 µM. However, it also displayed notable cytotoxicity, with a CC50 value of 41.46 µM. Therefore, compound A9 was selected as a prototype structure for further structural optimization in this study. Initially, it was confirmed that the substituting the α,ß-unsaturated ketone with pent-1,4-diene-3-one as a linker group significantly reduced the cytotoxicity of the final compounds. Subsequently, the penta-1,4-dien-3-one group was utilized as a privileged fragment for further structural optimization. Following two subsequent rounds of optimizations, we identified compound IIB-2, which contains a 2,6-dimethoxyphenyl- and 1,4-pentadiene-3-one moieties. This compound exhibited inhibitory effects on oseltamivir-resistant strains comparable to its precursor (compound A9), while demonstrating reduced toxicity (CC50 > 100 µM). Furthermore, we investigated its mechanism of action against anti-influenza virus through immunofluorescence, Western blot, and surface plasmon resonance (SPR) experiments. The results revealed that compound IIB-2 can impede virus proliferation by blocking the export of influenza virus nucleoprotein. Thusly, our findings further emphasize influenza nuclear export as a viable target for designing novel chalcone-like derivatives with potential inhibitory properties that could be explored in future lead optimization studies.


Assuntos
Chalconas , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Humanos , Influenza Humana/tratamento farmacológico , Oseltamivir/farmacologia , Antivirais/química , Chalconas/farmacologia , Transporte Ativo do Núcleo Celular
18.
Artigo em Inglês | MEDLINE | ID: mdl-37817300

RESUMO

As part of its role in the World Health Organization's (WHO) Global Influenza Surveillance and Response System (GISRS), the WHO Collaborating Centre for Reference and Research on Influenza in Melbourne received a record total of 12,073 human influenza positive samples during 2022. Viruses were analysed for their antigenic, genetic and antiviral susceptibility properties. Selected viruses were propagated in qualified cells or embryonated hen's eggs for potential use in seasonal influenza virus vaccines. In 2022, influenza A(H3N2) viruses predominated over influenza A(H1N1)pdm09 and B viruses, accounting for 77% of all viruses analysed. The majority of A(H1N1)pdm09, A(H3N2) and influenza B viruses analysed at the Centre were found to be antigenically and genetically similar to the respective WHO recommended vaccine strains for the southern hemisphere in 2022. Of 3,372 samples tested for susceptibility to the neuraminidase inhibitors oseltamivir and zanamivir, two A(H1N1)pdm09 viruses showed highly reduced inhibition against oseltamivir.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Animais , Feminino , Humanos , Austrália/epidemiologia , Galinhas , Farmacorresistência Viral/genética , Farmacorresistência Viral/imunologia , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/uso terapêutico , Influenza Humana/epidemiologia , Influenza Humana/genética , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Oseltamivir/farmacologia , Organização Mundial da Saúde , Zanamivir/farmacologia , Antivirais/farmacologia
19.
mSystems ; 8(5): e0067023, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37772870

RESUMO

IMPORTANCE: NA is a crucial surface antigen and drug target of influenza A virus. A comprehensive understanding of NA's mutational effect and drug resistance profiles in vivo is essential for comprehending the evolutionary constraints and making informed choices regarding drug selection to combat resistance in clinical settings. In the current study, we established an efficient deep mutational screening system in mouse lung tissues and systematically evaluated the fitness effect and drug resistance to three neuraminidase inhibitors of NA single-nucleotide mutations. The fitness of NA mutants is generally correlated with a natural mutation in the database. The fitness of NA mutants is influenced by biophysical factors such as protein stability, complex formation, and the immune response triggered by viral infection. In addition to confirming previously reported drug-resistant mutations, novel mutations were identified. Interestingly, we identified an allosteric drug-resistance mutation that is not located within the drug-binding pocket but potentially affects drug binding by interfering with NA tetramerization. The dual assessments performed in this study provide a more accurate assessment of the evolutionary potential of drug-resistant mutations and offer guidance for the rational selection of antiviral drugs.


Assuntos
Farmacorresistência Viral , Vírus da Influenza A , Neuraminidase , Animais , Camundongos , Antivirais/farmacologia , Vírus da Influenza A/genética , Mutação/genética , Neuraminidase/genética , Oseltamivir/farmacologia
20.
Antiviral Res ; 217: 105701, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37567255

RESUMO

Neuraminidase inhibitors (NAIs) are recommended for influenza treatment and prevention worldwide. The most widely prescribed NAI is oral oseltamivir, while inhaled zanamivir is less commonly used. Using phenotypic neuraminidase (NA) enzymatic assays and molecular modeling approaches, we examined the ability of the investigational orally-dosed NAI AV5080 to inhibit viruses of the influenza A(H1N1)pdm09, A(H3N2), A(H5N1), and A(H7N9) subtypes and the influenza B/Victoria- and B/Yamagata-lineages containing NA substitutions conferring oseltamivir or zanamivir resistance including: NA-R292K, NA-E119G/V, NA-H274Y, NA-I122L/N, and NA-R150K. Broadly, AV5080 showed enhanced in vitro efficacy when compared with oseltamivir and/or zanamivir. Reduced AV5080 inhibition was determined for influenza A viruses with NA-E119G and NA-R292K, and for B/Victoria-lineage viruses with NA-I122N/L and B/Yamagata-lineage virus with NA-R150K. Molecular modeling suggested loss of the short hydrogen bond to the carboxyl group of AV5080 affected inhibition of NA-R292K viruses, whereas loss of the salt bridge with the guanidine group of AV5080 affected inhibition of NA-E119G. The resistance profiles and predicted binding modes of AV5080 and zanamivir are most similar, but dissimilar to those of oseltamivir, in part because of a guanidine moiety compensatory binding effect. Overall, our data suggests that AV5080 is a promising orally-dosed NAI that exhibited similar or superior in vitro efficacy against viruses with reduced or highly reduced inhibition phenotypes with respect to currently approved NAIs.


Assuntos
Herpesvirus Cercopitecino 1 , Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Subtipo H7N9 do Vírus da Influenza A , Influenza Humana , Humanos , Antivirais/farmacologia , Farmacorresistência Viral/genética , Inibidores Enzimáticos/farmacologia , Guanidina/metabolismo , Guanidinas/metabolismo , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2 , Influenza Humana/virologia , Neuraminidase/genética , Oseltamivir/farmacologia , Zanamivir/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...